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Double Harmonic Mappings of Riemannian Manifolds 
and Its Applications to Stationary Axisymmetric 
Gravitational Fields 
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Harmonic mappings of Riemannian manifolds are discussed by a double 
complex function method, and the double-complex Ernst equation and the 
related B/icklund transformations are naturally derived. Further, the Ernst 
solution and its dual solution are obtained by two different methods, respec- 
tively. Therefore, the results obtained by A. Eris are extended to a double form. 

1. INTRODUCTION AND PRELIMINARIES 

Eris (1977; Eris and Nutku, 1975) investigated applications of  har- 
monic mappings of  Riemannian manifolds to general relativity. In particu- 
lar, for stationary axisymmetric gravitational fields, the Ernst solution is 
concretely derived by using the Hamil ton-Jacobi  (HJ) technique and 
composite mappings. However, only ordinary complex functions are used 
in the method, and therefore half of  the complete results are lost. In fact, 
Zhong (1985) has given a double  complex function method combining 
ordinary complex numbers with hyperbolic complex numbers, and estab- 
lished the double-complex Ernst equation. By using this method the 
solutions for the gravitational fields are always obtained in pairs. Thus it 
should be possible to apply the double-complex function method to har- 
monic mappings of  Riemannian manifolds. The purpose of this paper is to 
discuss harmonic mappings by the double-complex function method, and 
extend Eris' results to a double form. We find that if we take some kind of  
double manifolds to discuss its harmonic mappings, we can naturally derive 
the double-complex Ernst equation and related B~icklund transformations 
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(BT). Further, the double Ernst solution, i.e., the Ernst solution (Ernst, 
1968) and its dual solution, are respectively obtained by two different 
methods, one using the class of double BTs given in Section 3, the other is 
extending Eris' results to a double form. 

For the sake of convenience, some necessary results and notation 
(Zhong, 1985; Eris and Nutku, 1975; Eris, 1977) are collected here. Let J 
denote the double imaginary uni L i.e., J = i ( i2= _ 1) or J = E (E2= 1, 
E ~ 1). Let all a, be real numbers, and the series ~ = o  Jam [ be convergent; 
then 

a(J) = ~ a , J  2" (1) 
n=O 

is called a double-real number. If  a(J) and b(J) are both double-real 
numbers, Z(J )  = a(J) + J .  b(J) is called a double-complex number. Some- 
times Z(J )  may be directly written as Z(J )  = (Zc,  Zn) ,  where 

Z c  = Z ( J  = i), Z n  = Z ( J  = E) (2) 

Similarly, if U(x, y; J)  and V(x ,y ;  J)  are both double-real functions of 
variables x, y, then F(x, y; J)  = U(x, y; J)  + J . V(x, y; J)  is called a dou- 
ble-complex function. Further, if F(x, y; J)  is a double-complex analytic 
function, double Cauchy-Riemann (CR) conditions satisfied by F(x, y; J)  
can be derived as follows: 

~u(J) ov(J) ~u(J) _ j2 ~v(J) 
Ox c 3 y '  Oy " Ox (3) 

When J = i, equation (3) is just changed into the ordinary CR conditions 

ou~ 0vc ~uc 0v~ 
Ox = a y '  Oy (3x (4a) 

When J = E, equation (3) is changed into new equations called hyperbolic 
CR conditions 

~u,., o r .  eu,, ~v,, 
3x - Oy 3y Ox (4b) 

Therefore, for a double-complex analytic function F(J),  one can write 

F(J)  = F(Z(J))  = F(x  + J " y) (5) 

Let M and M'  be two ordinary Riemannian manifolds with the metric 

dF = g,v(x) dx u dx ~ (t~, v = 1, 2 . . . . .  n) 
(6) 

dL 2 = GAB(dp) d$ Ad$  n (A, B = 1, 2 . . . . .  m) 
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respectively, and a mapping 4): M -~ M'.  If  the mapping 4) makes the action 

f 04)A 04) ~ I =  d"xw/ggaV(x) Ox~, Ox v GAs(4)) (7) 

satisfy the condition 6I = 0, it is called harmonic. The necessary and suffi- 
cient conditions for a mapping to be harmonic are given by the Euler 
equations 

1 0 V r- 04)c7 ~ c 04)A04) B 0 (8) 

where C = 1, 2 , . . . ,  m. The FcB are coefficients of  the Riemannian connec- 
tion on M'.  Notice that the above Euler equations are nonlinear partial 
differential equations of variables 4) A. The condition for two different coor- 
dinates 4)' and 4) on M '  to keep the Euler equations of the same form is 

G~n(4)') = GA~(4)') (9) 

This means G'as(4)') and GAB(4)) must be the same in functional form for 
the variables 4)' and 4). Condition (9) may be expressed as 

04) c 04) o ')  
G38(4)') 04), A 04)m GCD(4)), 4) = 4)(4) (10) 

In fact, equation (10) implies functional relations between two different 
solutions for the Euler equation (8), i.e., B~icklund transformations (BT). 

2. A CLASS OF DOUBLE B.~CKLUND TRANSFORMATIONS FOR 
THE EULER EQUATIONS 

Now we consider a double-two-dimensional manifold M'(J) with the 
metric 

dL 2(J) = GaB(J) d4) A(d) d4)a(d) (11) 

and take the metric as diagonal, i.e., G~l =~(4)), G22 = -Jfl(4)), and 
G)2 = G21 = 0, where ~(4)) and /7($) are real functions of 4), and 4) is a 
double-real function of  coordinate x on M, i.e., 4 )=  4)(x; d). If we let 
4) =($1 ,  $2) and r 1 6 2  2) denote two different double solutions of  
equation (8), then equation (10) results in 

/ 001 \2  / '002\2 0~(0)t~-~7 ) --dZ/7(O)t-~ ) =o~(4)) (12) 

/ ' 0  (I) 1"\ 2 2 / ' 0  (I)2X~ 

1/0 ol"x ('~ 01"\ 2 [002"X/O02"k 
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Furthermore, if a(05) = fl(05), the metric (1 1) changes into 

aL2(J) = ~(05)[(d05 ' )  2 _ j2(d05 2) 2] ( 1 5 )  

When J = i, we have 

dL 2 = ct(05c)[(d05 ~c) 2 + (d05~) 2] (16a) 

When J = E, equation (1 5) is changed into 

dLZn = ~(05/4)[(d05 ~) 2 - (d05 ~) z] (16b) 

Thus, equations (12)-(14) can be rewritten as 

t3q~ 1 OOp 2 t3~ 1 2/t3Op2\ 

which are just the double CR conditions. Further, if do ~ and ~2 have 
continuous derivatives to 05J and q5 2, respectively, ~ + J .  (I)2 is also an 
analytic function of the double-complex variable 05 ~ + J .  05 2. In this case, 
a class of double BTs of the Euler equation (8) satisfies the following 
double analytic function relation: 

W ( J )  = F[w(J)] (1 8) 

where W ( J )  = ~ + J .  ~2 and w(J)  = 051 + j .  052. 
Now we explain the meaning of the above results. It is well known that 

the metric of an arbitrary two-dimensional manifold is either positive 
definite [the signature is ( +  1, + 1); we consider no distinction between a 
negative-definite and a positive-definite metric] or indefinite [the signature 
is ( + 1 , - 1 ) ] .  Evidently, by virtue of equation (15) we give the most 
common results. The metric corresponding to J = i is positive definite, and 
in this case the class of BTs for Euler equations satisfies the ordinary CR 
conditions (4a). This indicates that there is an ordinary-complex analytic 
relation between any two solutions of the Euler equations. But the metric 
corresponding to J = e is indefinite, and under the condition, the class of 
BTs for the Euler equations satisfies the hyperbolic CR conditions (4b). 
Hence, there is a hyperbolic-complex analytic relation between any two 
solutions for the Euler equations. Evidently, this is a new result. It follows 
that a class of double BTs for the Euler equations can be obtained by 
doubling harmonic mappings, and they satisfy double CR conditions. 

3. DOUBLE-COMPLEX ERNST EQUATION AND RELATED 
BACKLUND TRANSFORMATIONS 

In order to apply the above results to the general theory of relativity, 
we let M denote a three-dimensional Riemannian manifold with the metric 

dl 2 = @2 + dz z + p2 d~o 2 (19) 
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and let M '  denote a double-two-dimensional Riemannian manifold with 
the metric 

dL e = F-Z( j ) [dF2( j )  _ j2 d•e(j)] (20) 

where F(J)  and ~ ( J )  are double-real functions of  p and z, respectively. It 
is easily verified that if we take the action 

I = . fFZ(J)[(VF) 2 - J(VO)Z]p dp dz dq~ (21) 

then the Euler equation corresponding to 6I = 0 is 

Re(E(J))  V2E(J) = VE(J) �9 VE(J)  (22) 

where E ( J ) =  F ( J ) +  J .  ~ (J )  is a double-complex Ernst potential, W =  
O 2 + p 1~3p + c~22, and V = (0p, 0z). It is clear that equation (22) is just the 
double-complex Ernst equation (Zhong, 1985). When J = i, we have 

Re Ec V2Ec = V E c "  VEc (23) 

which is just the result given by Eris (1977). When J = e, equation (22) is 
changed into 

Re Eu V2Eu = VEH �9 VEu 

This is the hyperbolic-complex Ernst equation. 
Let the metric for stationary axisymmetric gravitational fields be 

ds2 = f ( d t  - co dq~)2 - f - ~[eT(dz2 + dp2 + p2 dq92)] (24) 

where (p, z, ~o) denote the cylindrical coordinates, and f, co, and ~ are real 
functions of p and z only. If E ( J ) = F ( J ) +  J . f~ ( J )  is a solution of  
equation (22), two different physical (real) solutions (f,  co) and (f, c_b) can 
be obtained as follows: 

( f ,  co) = (Fc, VT"c 1 ( f~c )) 
(25) 

( ~  c.b) = ( T(FH ), n ~  )) 

where the N K  transformations (Neugebauer and Kramer, 1969) are 

=P_ 
T: f ~ T ( f )  f 

Vf: co--+ q j = Vf(co) (26) 

u?= p(~3:co dp - apco dz) 

It follows that finding solutions of  stationary axisymmetric gravitational 
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fields can be focused on finding solutions of the double-complex Ernst 
equation (22). From equations (21) and (22), it is seen that the double- 
complex Ernst equation is the natural result to double harmonic mappings. 
Hence, the class of BTs for the Euler equations should be fit for the 
double-complex Ernst equation. If we let E ' ( J ) = F ( J ) + J .  f~(J) and 
E(J) = U ( J ) + J . V ( J )  be two double solutions of equation (22), then 
according to equations (12)-(14) and (20), a class of double BTs 
T(J): E ( J ) ~ E ' ( J ) =  T(J)E(J) can be written as 

uZ,j,[-i/t~F(j) x~2 j2(~3n(j) ~2 ] 
t ) L t ~ - ~ )  - \ ~ J  _] =v2(J)  (27) 

V2,j. _ g=[af~(g)'~2| _gzF(J) (28) [-{aT(J) 

OF(a) OF(J) j2 Of~(S). Of~(S)_ 0 (29) 
 v(J)  w(J) av(]) 

Furthermore equation (27)-(29) can be simplified as 

OF(J) O~(J) aF(J) _ as a~(J) (30) 
u(])  v(j) aw(]) 

Evidently, the double BT T(J) for the double-complex Ernst equation also 
satisfies the double CR conditions. Therefore, there is a double-complex 
analytic relation between E'(J) and E(J). From equations (27) and (30), 
we obtain the concrete form of the double BT T(J) as follows: 

dE'(J) F(J) Jo 
dE(J) - ~ e (31) 

where the double exponential function is 

oo 1 
e J~ = ~ ~.. (O J)" = C(OJ) + J" S(OJ) 

n ~ O  �9 

and C(OJ) and S(OJ) denote the double cosine and sine functions, respec- 
tively (Zhong, 1985). When J = i, equation (32) is an ordinary BT T c for 
the ordinary-complex Ernst equation (23a), 

Tc" Ec -~ E'c, dE'c Fcei  o (32) 
dEc Uc 

When J = e, equation (32) is a hyperbolic BT Ttt for the hyperbolic-com- 
plex Ernst equation (23b), 

dE~ F~, e< o (33) TM : EH---, E'H, = 
dEn Ut-t 
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where the hyperbolic exponential function e C~ = ch 0 + J "  sh 0. In fact, we 
can give examples: (i) 

1 
E'(J) = (34) 

E(J) 

(ii) (Zhang, 1985) 

(iii) (Wu, 1992) 

E ' ( J )  = 
a(J)E(J) + J" b(J) 

J .c(J)E(J)  +d(J )  

a(J)d(J) - J2b(J)c(J) = 1 
(35) 

, j  F ( )  
OpE'(J) = -~--j-f g(J)8pE(J) 

F'(J) 
8qE'(J) = ~ g(J)OqE(J) (36) 

g(J)g(g) = 1 

p = p + J ' z ,  q = p - J . z  

Among them every pair of (E(J), E'(J)) can be verified to meet equation 
(32). However, it is noticed that, by using a dual mapping, the class of 
double BTs T(J) may be changed into a new class of double BTs T'(J) 
which no longer satisfies equation (32) (Wu, 1992). This means the double 
BT T(J) discussed above is only one class of many  possible double BTs for 
the double-complex Ernst equation. 

4. A D O U B L E  S T A T I O N A R Y  S O L U T I O N  OF THE 
D O U B L E - C O M P L E X  ERNST E Q U A T I O N  

Let E ' ( J )  = U denote a static potential [to the static potential E(J),  
E(J) = Ec = E/4 = U], which is an ordinary real function of p and z. Thus, 
U satisfies 

U V2U = V U .  VU (37) 

If we take U = e 2'~, then equation (37) can be simplified as the Laplace 
equation 

V2o " = 0 (38) 

In addition, let E(J) = F(J) + J �9 ~(J)  denote a stationary solution of the 
double.complex Ernst equation (22); thus the relations between E(J) and 
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�9 m E (J) ay be expressed as 

F(J)  = F(U, J), f~(J) = f~(U, J)  (39) 

By using equation (39), one changes the double-complex Ernst equation 
into 

d2F(J) 

da = 

When J = i, we obtain 

dZFc 
da 2 

F(J) L\ do- / + \ d~ / _I 
(40) 

d2~)(J) 2 dr (J )  d~(J)  = 0 
da 2 F(J)  da da 

1 F(dFcX~ 2 (d~'~Cl21= 0 
Fc L k Wo / - k-7;  / ] 

(41a) 
d:n___~ _ 2 _  d f  ~ d n c  = 0 

da 2 Fc da da 

These are just the geodesic equations with the affine parameter a on M'  
(Eris, 1977). When J = e, equations (40) change into 

da2 Fn L\ d~ / + \-dT, / J 
(41b) 

dE~_____E~ _ 2 dFH d~). _ 0 
da 2 F .  da da 

These are the geodesic equations on M~/. From equations (40) we obtain 
the solution which satisfies the conditions s = 0 and F(J) = 1 at infi- 
nity, 

[~(J)  + b(J)] 2 - j2F2(j)  = a2(j)  (42) 

where a(J) and b(J) are both double-real constants and satisfy 

bZ(j) _ j2 = a2(j)  (43) 

From equation (42), it is seen that when J = i, we have 

(~c  + bc) 2 + r2c = a2 (44a) 

This indicates that the solution (Fc, s of the ordinary-complex Ernst 
equation (23a) corresponds to a cycle on Mb,  but when J = E, equation 
(42) changes into 

( ~"~u -{- bH ) 2 --  F2 = a~ (44b) 

which implies that the solution (Fu, ~H) of the hyperbolic-complex Ernst 
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equation (23b) corresponds to a hyperbola on M~t. In addition, if we 
rewrite equation (27) as 

(dF(S)) 2 .2[dn(j) '~2 F2( j )  
dU el - a  ~ , ~ )  = U 2 (45) 

and combine equation (45) with equations (42) and (43), then the double 
BT between the stationary solution (F(J) ,  f~(J)) and the static solution U 
can be derived as follows: 

2a(J )U 
F ( J )  = a (J ) (U  2 + 1) - b(J ) (U  z - 1) 

U 2 -  1 (46) 

f~(J) = a (J ) (U 2 + 1) - b(J ) (U 2 - 1) 

If  we let 

fcsc 0, (J = i) 
a(J) = CS[OJ] = [csch 0, (J = E) 

(47) 
)'ctg 0, (J = i) 

b(J)  = CT[0JI = [cth 0, (J = E) 

where the double cosecant function is CS(0J) = (S(0J))-  ~ and the double 
cotangent function is C T ( 0 J ) =  C(OJ)/S(OJ), then, obviously, a(J) and 
b(J)  meet equation (43). Thus, equation (46) can be written as 

2U 
F ( J )  = (U 2 + 1) - -  ( U  2 - 1) C[0J] 

(U 2 -  1) S[0J] (48) 
n ( J )  = ( u  2 + l )  - ( u  2 - 1) c [ 0 J ]  

which is just the solution of the double-complex Ernst equation (22), i.e., 

~( j )  _ 1 + E(J______~) _ _eJO cth s, U = e 2" (49) 
1 - E ( J )  

where E(J )  = F ( J )  + J"  n ( J ) ,  and V2a = O. When J = i, we obtain 

E(J )  = Ec  = Fc + if~c, ~c = -e~~ cth a (50a) 

This is just the well-known Ernst solution (Ernst, 1968). But when J = e, 
we have 

E ( J )  = EH = FH + E ~ I ,  ~t4 = - -e '~  cth a (50b) 

This is the dual solution of (50), which is new. 
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So far in this work we have naturally derived the double-complex Ernst 
solution ~(J) = - e  J~ cth tr, which is a double BT of the double-complex 
Ernst equation between a double stationary solution and a static solution. 
Evidently, this result once again demonstrates that there is, indeed, a class 
of double BTs which meets the double CR conditions for some solutions of  
the double-complex Ernst equation. 

5. A D O U B L E  F O R M  OF ERIS' RESULTS 

5.1. Double Composite Mappings 

Eris (1977) applied the HJ technique and composite mappings to 
stationary axisymmetric gravitational fields in order to generate new class 
of  solutions. But, in fact, only the Ernst solution was obtained by this 
method. In order to obtain a new solution which is a dual solution of  the 
Ernst solution, now we will extend Eris' results to a double form. 

Let d denote a mapping from Riemannian manifold M to M'.  If we 
introduce a third Riemannian manifold M" which is one-dimensional as 
follows, 

T (51) 

then the mapping d: M ~ M' can be regarded as a composite mapping 

d = k o h (52) 

where h: M ~ M" and k: M" --, M' .  If the manifolds M, M", and M ' ( J )  
have the metrics 

dl 2 = dp2 + dz 2 + p2 drp2 (53a) 

dl "2 = d~b 2 (53b) 

dl,2 = F-a(j)[dFZ(j) _ j2 df~2(j)]  (53c) 

respectively, then the composite mapping d: M ~ M ' ( J )  is changed into a 
double mapping d(J)  as follows: 

dc ~ 0 

, (54)  
h ~ 
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Therefore, the double composite mapping d(J) can be expressed as 

d(J) = k(J) ~ h (55) 

When J =  i, d(J)= dc =kc"  h, which is the mapping from M to M b. 
When J = e, d(J) = du = kH �9 h, which is the mapping from M to M~.  In 
addition, the requirement that d(J) be harmonic means that h and k(J) are 
both harmonic mappings. In terms of local coordinates the component of 
h is ~b and those of k(J) are F(J) and O(J). The condition that h be a 
harmonic mapping is given as follows: 

1 
~bpo + P q~p + ~b~z = 0 (56) 

whereas the condition that k(J) be harmonic means (F(J), O(J)) satisfies 
the geodesic equations on M'(J), i.e., 

dZF(J) 1 rl/dF(J)'~ 2 _2/d~(J)~ 2-] 

(57) 
d2f~(J) 2 dF(J) dO(J) 

= 0  
d~) 2 F(J) dcb d49 

which are equivalent to equations (40). Hence, the expressions for F(J) and 
O(J) provide us with double solutions to the stationary axisymmetric 
gravitational equations. Evidently, the mapping dc, which corresponds to 
the positive-definite metric of M'(J) ,  is just the composite mapping dis- 
cussed by Eris (1977), but the mapping dH, which corresponds to the 
negative-definite metric of M'(J) ,  is a new mapping. 

5.2. The Double HJ  Equation and Double Ernst Solution 

Now we will solve the geodesic equations (57) by the HJ technique. 
For this purpose we first extend the HJ equation 

+ n yA, = 0 (58) 

to a double form. Here 4) and yA are local coordinates of M" and M'(J), 
respectively, S denotes the principal function, and the Hamiltonian H is 
simply the kinetic energy 

1 aS  0S 
_ _ _  g,A8 (59) H (g,)m ayA OyB 

where g" and g '  are the metrics of M" and M',  respectively. Combining 
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equations (53b) and (53c) with equation (59), we have 

H(J)  = F2(j)  [ ( ~ S ( J )  ~2 _ ~2 ~ OS(J) VG 
L\OF(j)) a t 0 - ~ )  j (60) 

Thus, we obtain the double HJ equation as follows: 

r F2" ., F['OS(J)'~ 2 _ j2 (OS(J)  ~2] 
0 - T  + (61) 

When J = i, equation (61) changes into 

O---~+Fc - ~ c  + t - ~ c )  J = 0  (62a) 

which is just the HJ equation given by Eris. When J = E, equation (61) 
changes into 

OS~ F '  [-[/OSH'~2 ( (~SH ~2] 

This is called the hyperbolic HJ equation. Calculation gives the complete 
solution of equation (61), 

S(J)  = -fl(J)q~ 4- o~(J)~(J) 4- [fl(J) 4- J20t2(j)F2(j)] i/2 

fl l/2(j) 4- [fl(j) 4- jzo:2(j)FZ(j)] 1/2 
_ f l , / z ( j )  In ( 6 3 )  

~(J)F(J)  

where ~(J) and fl(J) are both arbitrary double-real numbers. We easily find 
that Sc  corresponding to J = i  is just the result given by Eris (1977). 
Further, in terms of the complex function 

1 4- F(J) 4- J .  ~(J) 
~(J) = 1 - F(J)  - J . ~ (J )  (64) 

the final result becomes 

~(J) = - e  J~ cth ~b (65) 

where 4, is a solution of the Laplace equation (56). It is clear that we once 
again obtain the double Ernst solution by using the double composite 
mapping and double HJ equation. This method not only extends Eris' 
results, but also indicates that there may be internal relations between the 
two different methods described in Sections 4 and 5, since both give the 
same result, i.e., the double Ernst solution. The investigation of this 
problem is the subject of forthcoming papers. 
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